Search in Rotated Sorted Array
Search in Rotated Sorted Array:
There is an integer array nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
Constraints:
1 <= nums.length <= 5000
-10^4 <= nums[i] <= 10^4
- All values of nums are unique.
nums
is an ascending array that is possibly rotated.-10^4 <= target <= 10^4
Try this Problem on your own or check similar problems:
Solution:
- Java
- JavaScript
- Python
- C++
public int search(int[] nums, int target) {
int start = 0, end = nums.length-1;
while(start <= end){
int mid = start + (end - start) / 2;
if(nums[mid] == target) return mid;
if(nums[mid] > target){
if(nums[mid] >= nums[start] && nums[start] > target){
start = mid + 1;
}else{
end = mid - 1;
}
}else{
if(nums[mid] <= nums[end] && nums[end] < target){
end = mid - 1;
}else{
start = mid + 1;
}
}
}
return -1;
}
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var search = function (nums, target) {
let start = 0;
let end = nums.length - 1;
while (start <= end) {
let mid = Math.floor(start + (end - start) / 2);
if (nums[mid] === target) {
return mid;
}
if (nums[mid] > target) {
if (nums[mid] >= nums[start] && nums[start] > target) {
start = mid + 1;
} else {
end = mid - 1;
}
} else {
if (nums[mid] <= nums[end] && nums[end] < target) {
end = mid - 1;
} else {
start = mid + 1;
}
}
}
return -1;
};
class Solution:
def search(self, nums: List[int], target: int) -> int:
start = 0
end = len(nums) - 1
while start <= end:
mid = start + (end - start) // 2
if nums[mid] == target:
return mid
if nums[mid] > target:
if nums[mid] >= nums[start] and nums[start] > target:
start = mid + 1
else:
end = mid - 1
else:
if nums[mid] <= nums[end] and nums[end] < target:
end = mid - 1
else:
start = mid + 1
return -1
class Solution {
public:
int search(vector<int>& nums, int target) {
int start = 0;
int end = nums.size() - 1;
while (start <= end) {
int mid = start + (end - start) / 2;
if (nums[mid] == target) {
return mid;
}
if (nums[mid] > target) {
if (nums[mid] >= nums[start] && nums[start] > target) {
start = mid + 1;
} else {
end = mid - 1;
}
} else {
if (nums[mid] <= nums[end] && nums[end] < target) {
end = mid - 1;
} else {
start = mid + 1;
}
}
}
return -1;
}
};
Time/Space Complexity:
- Time Complexity: O(logn)
- Space Complexity: O(1)
Explanation:
Modified binary search which we break down into three steps:
- First we check if the number at
mid
is thetarget
and return it as the result - If it's not we first check if the element at
mid
is larger than our target and we break down this case further in two subcases:
start..mid
is sorted sequencenums[mid] >= nums[start]
, and ifnums[start] > target
that means all numbers in the left part are larger thantarget
so we have to search in the right partstart = mid + 1
- Otherwise we know the left is rotated and we have to search in it (
mid..end
is sorted, but we know our target is smaller thanmid
and we can skip the whole right side)
- If element at
mid
is smaller than thetarget
again we have two subcases:
mid..end
is sorted sequencenums[mid] <= nums[end]
andtarget
is larger than the element atend
that means it's larger than all elements on the right side so search for the element in left sideend = mid - 1
- Otherwise we know right is rotated and we have to search in that half (
start..mid
is sorted and we knowtarget
is larger than element atmid
, so it is larger than every element on the left side and we can discard it)
If we don't find the target
we return -1
.