Search in Rotated Sorted Array II
Search in Rotated Sorted Array II:
There is an integer array nums
sorted in non-decreasing order (not necessarily with distinct values).
Before being passed to your function, nums
is rotated at an unknown pivot index k
(0 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,4,4,5,6,6,7]
might be rotated at pivot index 5
and become [4,5,6,6,7,0,1,2,4,4]
.
Given the array nums
after the rotation and an integer target
, return true
if target
is in nums
, or false
if it is not in nums
.
You must decrease the overall operation steps as much as possible.
Example 1:
Input: nums = [2,5,6,0,0,1,2], target = 0
Output: true
Example 2:
Input: nums = [2,5,6,0,0,1,2], target = 3
Output: false
Constraints:
1 <= nums.length <= 5000
-10^4 <= nums[i] <= 10^4
nums
is guaranteed to be rotated at some pivot.-10^4 <= target <= 10^4
Try this Problem on your own or check similar problems:
Solution:
- Java
- JavaScript
- Python
- C++
public boolean search(int[] nums, int target) {
int start = 0, end = nums.length-1;
while(start <= end){
int mid = start + (end - start) / 2;
if(nums[mid] == target) return true;
if((nums[start] == nums[mid]) && (nums[end] == nums[mid]))
{
++start;
--end;
}else if(nums[mid] > target){
if(nums[mid] >= nums[start] && nums[start] > target){
start = mid + 1;
}else{
end = mid - 1;
}
}else{
if(nums[mid] <= nums[end] && nums[end] < target){
end = mid - 1;
}else{
start = mid + 1;
}
}
}
return false;
}
/**
* @param {number[]} nums
* @param {number} target
* @return {boolean}
*/
var search = function (nums, target) {
let start = 0;
let end = nums.length - 1;
while (start <= end) {
let mid = Math.floor(start + (end - start) / 2);
if (nums[mid] === target) {
return true;
}
if (nums[start] === nums[mid] && nums[end] === nums[mid]) {
start += 1;
end -= 1;
} else if (nums[mid] > target) {
if (nums[mid] >= nums[start] && nums[start] > target) {
start = mid + 1;
} else {
end = mid - 1;
}
} else {
if (nums[mid] <= nums[end] && nums[end] < target) {
end = mid - 1;
} else {
start = mid + 1;
}
}
}
return false;
};
class Solution:
def search(self, nums: List[int], target: int) -> bool:
start = 0
end = len(nums) - 1
while start <= end:
mid = start + (end - start) // 2
if nums[mid] == target:
return True
if nums[start] == nums[mid] and nums[end] == nums[mid]:
start += 1
end -= 1
elif nums[mid] > target:
if nums[mid] >= nums[start] and nums[start] > target:
start = mid + 1
else:
end = mid - 1
else:
if nums[mid] <= nums[end] and nums[end] < target:
end = mid - 1
else:
start = mid + 1
return False
class Solution {
public:
bool search(vector<int>& nums, int target) {
int start = 0;
int end = nums.size() - 1;
while (start <= end) {
int mid = start + (end - start) / 2;
if (nums[mid] == target) {
return true;
}
if (nums[start] == nums[mid] && nums[end] == nums[mid]) {
++start;
--end;
} else if (nums[mid] > target) {
if (nums[mid] >= nums[start] && nums[start] > target) {
start = mid + 1;
} else {
end = mid - 1;
}
} else {
if (nums[mid] <= nums[end] && nums[end] < target) {
end = mid - 1;
} else {
start = mid + 1;
}
}
}
return false;
}
};
Time/Space Complexity:
- Time Complexity: O(n)
- Space Complexity: O(1)
Explanation:
The only difference from Search in Rotated Sorted Array is that now we have duplicates in the input array. If we encounter duplicates we just skip them by moving the start
to the right, and end
to the left (e.g. 1, 1, 1, 0, 1
with target 0
we can just skip initial start
and end
since they are equal to the mid
, and none of them is equal to the target
), otherwise the algorithm works as the one without duplicates. In the worst case we will have time complexity of O(n)
(linear search, e.g. nums = [1,1,1,1,1], target = 2
we will just iterate over the whole array in linear fashion).