Roman to Integer
Roman to Integer:
Roman numerals are represented by seven different symbols: I
, V
, X
, L
, C
, D
and M
.
Symbol Value
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
For example, 2
is written as II
in Roman numeral, just two ones added together. 12
is written as XII
, which is simply X + II
. The number 27
is written as XXVII
, which is XX + V + II
.
Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII
. Instead, the number four is written as IV
. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX
. There are six instances where subtraction is used:
I
can be placed beforeV
(5) andX
(10) to make 4 and 9.X
can be placed beforeL
(50) andC
(100) to make 40 and 90.C
can be placed beforeD
(500) andM
(1000) to make 400 and 900.
Given a roman numeral, convert it to an integer.
Example 1:
Input: s = "III"
Output: 3
Explanation: III = 3.
Example 2:
Input: s = "LVIII"
Output: 58
Explanation: L = 50, V= 5, III = 3.
Example 3:
Input: s = "MCMXCIV"
Output: 1994
Explanation: M = 1000, CM = 900, XC = 90 and IV = 4.
Constraints:
1 <= s.length <= 15
s
contains only the characters ('I'
,'V'
,'X'
,'L'
,'C'
,'D'
,'M'
).- It is guaranteed that
s
is a valid roman numeral in the range[1, 3999]
.
Try this Problem on your own or check similar problems:
Solution:
- Java
- JavaScript
- Python
- C++
public int romanToInt(String s) {
Map<Character, Set<Character>> validSubtraction = new HashMap<>();
validSubtraction.put('I', new HashSet<>(List.of('V', 'X')));
validSubtraction.put('X', new HashSet<>(List.of('L', 'C')));
validSubtraction.put('C', new HashSet<>(List.of('D', 'M')));
Map<Character, Integer> romanToIntMap = new HashMap<>();
romanToIntMap.put('I', 1);
romanToIntMap.put('V', 5);
romanToIntMap.put('X', 10);
romanToIntMap.put('L', 50);
romanToIntMap.put('C', 100);
romanToIntMap.put('D', 500);
romanToIntMap.put('M', 1000);
int number = 0;
Character prev = null;
for(int i = 0; i < s.length(); ++i){
char c = s.charAt(i);
number += romanToIntMap.get(c);
if(prev != null && validSubtraction.containsKey(prev) && validSubtraction.get(prev).contains(c)){
number -= 2 * romanToIntMap.get(prev);
}
prev = c;
}
return number;
}
/**
* @param {string} s
* @return {number}
*/
var romanToInt = function (s) {
const validSubtraction = new Map();
validSubtraction.set("I", new Set(["V", "X"]));
validSubtraction.set("X", new Set(["L", "C"]));
validSubtraction.set("C", new Set(["D", "M"]));
const romanToIntMap = new Map();
romanToIntMap.set("I", 1);
romanToIntMap.set("V", 5);
romanToIntMap.set("X", 10);
romanToIntMap.set("L", 50);
romanToIntMap.set("C", 100);
romanToIntMap.set("D", 500);
romanToIntMap.set("M", 1000);
let number = 0;
let prev = null;
for (let i = 0; i < s.length; i++) {
const c = s.charAt(i);
number += romanToIntMap.get(c);
if (
prev !== null &&
validSubtraction.has(prev) &&
validSubtraction.get(prev).has(c)
) {
number -= 2 * romanToIntMap.get(prev);
}
prev = c;
}
return number;
};
class Solution:
def romanToInt(self, s: str) -> int:
validSubtraction = {
'I': {'V', 'X'},
'X': {'L', 'C'},
'C': {'D', 'M'}
}
romanToIntMap = {
'I': 1,
'V': 5,
'X': 10,
'L': 50,
'C': 100,
'D': 500,
'M': 1000
}
number = 0
prev = None
for c in s:
number += romanToIntMap[c]
if prev is not None and prev in validSubtraction and c in validSubtraction[prev]:
number -= 2 * romanToIntMap[prev]
prev = c
return number
class Solution {
public:
int romanToInt(string s) {
unordered_map<char, unordered_set<char>> validSubtraction = {
{'I', {'V', 'X'}},
{'X', {'L', 'C'}},
{'C', {'D', 'M'}}
};
unordered_map<char, int> romanToIntMap = {
{'I', 1},
{'V', 5},
{'X', 10},
{'L', 50},
{'C', 100},
{'D', 500},
{'M', 1000}
};
int number = 0;
char prev = '\0';
for (char c : s) {
number += romanToIntMap[c];
if (prev != '\0' && validSubtraction.find(prev) != validSubtraction.end() && validSubtraction[prev].find(c) != validSubtraction[prev].end()) {
number -= 2 * romanToIntMap[prev];
}
prev = c;
}
return number;
}
};
Time/Space Complexity:
- Time Complexity: O(n)
- Space Complexity: O(1)
Explanation:
Since we traverse the whole string we have linear time complexity proportional to the length of the string, also we keep store of limited number of records in two maps so we don't spend any additional space leading to contant space complexity. We create two maps, one from mapping the character to integer value romanToIntMap
and the other to check if we have valid subtraction validSubtraction
. We traverse the string each time adding to our number
the corresponding value of the current character once converted from roman to int using romanToIntMap
map, we also track the prev
character and check if we have a valid subtraction. If we have, we have to subtract the value of prev
two times (one for addition of prev
in the previous iteration, and the other since we have valid subtraction). We return the number
variable as our final result.